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For some types of research carried out with PEP
there has been a history of increasing model complexity and
an increasing number of parameters adjusted at one time.

For the study of solar system dynamics and tests of gravity
theory, economic limits and the physical limitations of
available computers have encumbered the use of large parameter
sets. However, there is ample evidence that it would be
useful to be able to make much larger solutions (i.e., solu-
tions of the normal equations with much larger numbers of
parameters). Planetary topography, now represented by a 123
term 2-dimensional Fourier series, is the limiting factor

for the Mars radar data. Expansion of the model to at least
203 terms is indicated.

Even the 123-term model has been considered to be
too large to be used for all three inner planets (Mercury,
Venus, Mars) if the data are to be analyzed simultaneously.
The inclusion of the optical data in the solution requires
200 to 350 extra bias parameters as well as outer planet
initial conditions to be included in the parameter set.

The résulting combined normal equations, including all para-
meters which it now appears would be useful (800 to 1000 of
them!) would require 2.5-4. megabytes of core and from 50

to 100 minutes of inversion time, using an in-core inverter on
an IBM 360/75. The core/system limitations on the Draper Lab.
360/75 put a bound of about 700 on the size of the largest
set of normal equations that PEP can solve (by special ar-
rangement); the inversion time would be 35 minutes. (The
Lincoln Lab 370/168 is about 3.5 times faster than the Draper
Lab 360 and should be able to invert a matrix for nearly 2000
parameters.)

While the cost of forming a single solution (at
$6.00 per minute) is by no means prohibitive, upwards of a
hundred solutions would require unusually strong funding.
However, that is a realistic number to wish to be able to
make in a given study. Thus there is a need to find a less
costly way of working.



Among the large number of solutions that go into a
study there are groups within which the only difference is in
the choice of parameter set. Generally, within these groups
the intersection of the individual parameter sets contains
nearly as many parameters as the individual sets. This fact
is the main motivation for the work that follows.

The Partial Prereduction Technique

The normal equations are of the form
U = BX (1)

where X is an adjustment vector of length n, B is the n by
n coefficient matrix, and the right hand side (RHS) vector,
U, of length n is formed using the prefit residuals. We
partition these using the parameter subsets {a} and {B}
such that {8} contains as many of the parameters common to
all solutions as is convenient, and {a} contains all of the
remaining parameters.
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where v is the "o part" of U and w is the "B part", etc.
Then
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It is not hard to see that a sub-set {a'}of the {a}

of parameters represented in Equation (4) could be ex-
tracted and solved in the same way as PEP usually treats
saved normal equations (SNE).

If by suitable choice of {B} all of the "para-
meters of interest" are in {a}, then no further work is
needed. 1If, however,” this condition fails or if predicted



residuals are to be calculated then we proceed:
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I1f the predicted residuals are not needed,
but the RMS of the weighted predicted residuals is needed
we may use the method of the memorandum Distribution/RDR
dated 24 Jan 1974. The change in the RMS weighted residual
is related to the square of the norm of the adjustment, N2, and
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The equations for including a priori information
in a solution are given in the memorandum Distribution/RDR
dated 28 July 1975. Applying these to Equation (2) yields
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Proceeding as above, we get
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where
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Since the principal reason for the use of Equation (4) is
to avoid having to invert a matrix the size of D for each
solution, it follows from Equation (11) that if a priori
information is to be added then either 1) it will be added
just before Equation (5) is used or 2) D (and thus F, and
zo) will be zero and Equation (11) will gake the form
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It will be seen later that for studies of solar
system dynamics, the matrix D may be too large to invert
conveniently. (See Appendix A.) Fortunately there are
a number of possible ways to handle the inversion. With a
little effort in the choice of {a}, D can be made block
diagonal, and thus easy to invert. If this is not reasonable,
D can be put in the form
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Such matrices can be inverted in small parts. There may also
be packaged matrix inverters that operate on a matrix stored
on a direct access device. Finally, it may be possible to use
the partial prereduction technique recursively. (This has

not been investigated.)

Realization of the Partial Prereduction Technique in PEP

The equations given above show that it is possible
towork with a very large set of normal equations and perform
numerous inexpensive numerical experiments (i.e., make solutions
with different parameter sets) as long as there is a large
set of parameters which is common to all solutions. (This is
the usual case.) The PEP implementation should be easy to use
and should maintain the potential of the method for high ef-
ficiency.

Using the partial prereduction technique, solutions
are made from SNE in two steps. 1In the first, an invest-
ment is made in generating a set of reduced total saved normal
equations (RTSNE). In the second, the RTSNE are used and a
solution of the normal equations is found. Much of the savings
comes from the ability to repeat this second step. This sug-
gests that the control scheme be designed to permit multiple-
solution runs.

In both of the above-mentioned two steps it is
necessary to identify a main set, {wn} = {a} U {8}, of



parameters and a subset. The usual PEP "L vectors" can be

used to identify {w}. The various subsets, such as {a}, can

be identified using parameter-name lists. Since we are consider-
ing multisolution runs, it should be possible to generate a

list by modifying a previously generated list. A set of

two-word commands, as listed in Table I, provides the needed
flexibility.

After a parameter set, {a'} € {a} , has been selected,
the program functions necessary to use the RTSNE are defined by
Equation (4) -- or (10) and (12) -- and (7). Each use will include
the inversion of the matrix C', a sub-matrix of C, and the cal-
culation of the solutions for the {a'} parameters. The prediction
of the postfit RMS weighted residual will also be performed. The
calculation of the solutions for the {B} parameters should be
programmed as an option.

Before the RTSNE can be used they must be generated. This

will be done according to Equations (5), (8), and (7) starting with
SNE, either "total", TSNE, or "series-by-series", SSNE. (See
Appendix B for the format.) Since the B matrix may be very large,

the sub-matrices C, D, and F will be formed separately. Further,
if the D matrix is to be treated as a block diagonal, each

block of D and each corresponding block of F will be formed separately.
Thus the SNE data set must be read a minimum of three times.

The following is a suggested order of operations, as-
suming all pointers have already been set up and the IDENTIFICATION
and POINTER GROUPS of records have been written on the RTSNE data
set.

1. Read SNE to form U, C. Save C on the first temporary
data set (TDS 1).

2. Read SNE to form F; save on TDS 2.

3. Read SNE to form D. Invert D and save D T on TDS 3.
Form D'l W.

4. Read TDS.,2 and TDS 3. Form FD_l and save on TDS 4.
=1
Form FD "W.

5. Form W+D_l

data set.

W and write the pointer group on the RTSNE

6. Add V to FD ‘wand write ¥ on the RTSNE data set.

7. Read TDS 2 and TDS 4. Form -FD 1F. Read TDS 1 and
form C. Write C on RTSNE data set.



Table I
Verb Noun Notes
* NAME solname used to identify the list
DEFINE MASTER used to define a basic list
* solname which can be modified
* ABOVE "solname" refers to any
LIST previously used name
ADD LIST these are used to modify
DELETE LIST a defined list
Notes:

To generate a list there must be a DEFINE.

The NAME is optional and of use only when a series of
solutions is to be made

The ADD and DELETE are optional. They follow the DEFINE
and there may be any number of them in any order.

LIST indicates that a list of parameter names follows.
(It is like the IBM/JCL use of "*" or "DATA".)

In generating the RTSNE only the DEFINE LIST command
is used

In using the RTSNE to form a solution, only the {a'}
subset of {a} need be specified.

In defining the {a'} the command word MASTER refers
to {al}.

*
The implementation of these commands can be postponed.



g. Write 7 on RTSNE data set.
9. Read TDS 4. Write FD'l on RTSNE data set.

Note that in the above procedures there are large matrix
multiply operations which could take large amounts of storage.
However, only one matrix needs to be in main storage. The other
two can be read/written one line at a time. The actual multiply
of the row of one matrix by the column of another should be done

by an assembly routine such as DOT sO as to keep the running

sum in register. (This gains an extra eight bits precision.)
To keep this operation efficient, care must be taken in setting
up the one matrix stored in core. (A check of the code

generated by IBM FORTRAN H/2 may show that the assembly
routine 1is not needed.)



APPENDIX A

The Parameter Sets {a} and {B}

As an explicit example of the application of partial pre-
reduction, the case of solar system dynamics is considered.
Two possible divisions of the parameters are considered:

(1) The set {a} is made small. (2) The matrix D is made block
diagonal. 1In both cases there are = 950 parameters and
solutions would generally contain 2 900 of these.

Division 1

NAME {a} Number
Planet masses 10
Asteroid parameters 7
Lunar harmonics 6
Relativity 15
Principle of equivalence 11
Plasma and other solar system parameters 12
Earth IC 6
Radar station locations 9
Radar biases 10
Radii of planets 5
91
{B}
AT-UT 50
Planet IC 54
Mercury topography 123
Venus topography 123
Mars topography 203
Optical biases 300
Radar biases 20
873
964

Division 2

Move Planet IC into {a}. There are then 145 elements in
and 819 in {8}. The matrix D will be block diagonal with
at least 4 blocks.



The example given does not represent an upper bound to
the number of parameters that could be included in a single
solution. A simple enlargement of the Mars topography
model (from N = 20, M =1 to N = 40, M = 4) would add 520
extra parameters. Although this would be an awkward way
to model the topography (because of PEP internal limitations),
it does indicate how fast topography models can add para-
meters to the estimation list.

A second, less dramatic example is the inclusion in the solar
system model of the four largest moons of Jupiter. If we as-
sume radar data from one of them and optical observations
taken of all four, then this part of the model will add from
60 to 100 parameters to the estimation list.
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APPENDIX B

Format of RTSNE Data Set

The data set consists of five separate groups. One of
these, #4, will not be programmed initially.

1. IDENTIFICATION GROUP contains the title, general
information, and "M-vector" records found in the
usual SNE data set.

2. POINTER GROUP contains pointer vectors to identify
the parameter subsets, nominal values, and a few
indicative data:

a. n total number of parameters

b. m number in {a}

c. NP =wplwy

d. NSER number of series-by-series right-hand-side
vectors in group 4. NSER = 0 for first version.

e. NAUX number of parameters included in group #5.
If NAUX # 0 and NAUX # n-m, then an extra record
of NAUX pointers must follow. NAUX = n-m for
first version

3. PRIMARY RTSNE GROUP contains the vector V and matrix
C in the usual SNE format.

4. SERIES-BY-SERIES GROUP contains the contributions to V
from separate series. The equations for this are not
explicitly included and the implementation of this
feature should be delayed. For now, NSER = 0 in
Group #2.

5. AUXILIARY RTSNE GROUP contains the vector Z and the
matrix F. The matrix is in the form of K-M records
of M double precision words plus identification words.
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