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I.  Introduction.

As the FAME instrument rotates and its rotation axis precesses around the Sun direction,
the field of view that it sweeps out overlaps from one rotation to another.  The overlap is the
smallest (but still substantial, with present nominals) where the view direction is 90 deg from the
Sun direction; it is the largest approximately where the view direction is closest or furthest from
the Sun direction.  The overlap is believed to be important during the spiral reduction phase of
the analysis, where it contributes to the "rigidity" or "cohesion" of the spiral.  This rigidity plays
a role in the immunity of the mission catalog from regional bias and the potential to determine
the center of a group of neighboring stars to high accuracy by averaging their determined
positions.  A low level of rigidity can increase the uncertainty of the estimate of the position of a
single star.

Recent work by Chandler and Reasenberg (paper in preparation) has suggested a need to
understand the overlap in more detail.  The following analysis responds to that need.

II.  Analysis.

Figure 1 shows the spherical geometry of the problem, with the Sun at S.  The reference
plane is perpendicular to the Sun direction, and XYS is a right-handed system of orthogonal
axes, with S and X in the ecliptic.  A rotation around S (i.e., CW around the S direction) by the
precession angle, v = XOA, results in a coordinate system ABS, where A is the ascending node
of the observation plane on the reference plane, and the observation plane is perpendicular to the
spacecraft rotation vector, R (in the precessing frame).  The rotation of the spacecraft is described
(in the Sun-oriented frame) by the Eulerian angles v, >, and n, where > = SOR and n is measured
(CW around the R direction) from A to P, the mean direction of the instrument’s view ports.  The
variation of the Sun direction is neglected in the calculation.  
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Figure 1.  The direction of view is 15 deg above the reference plane and 70 deg from the x axis.
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Consider a target star at T. In the XYS system, the target has coordinates (g, h), where g
is measured in the reference plane from X (toward Y) and h is measured from the reference plane
(toward the Sun).  In the ABS system, the target has coordinates (u, h), where u is measured in
the reference plane from A (toward B), and g = u + v.  We ask whether (and for what values of v)
the star is within the observation band of width 2w centered on the observing plane, i.e., within
the region swept out by the field of view.  For stars that can be within the observation band (for a
particular Sun direction), we will find D, the size of the range of v for which the star will be seen
in every rotation.  We need to consider two cases separately: |h| < |> - w| and |h| > |> - w|.

CASE I, |h| < |> - w|.  We address this problem by finding (for fixed h) the values of u for
which T is at the upper and lower bound of the observing band, u- and u+ respectively.  (In Fig. 1,
T is shown at the upper bound.)  The value of D follows trivially.  Considering spherical triangle
RST, we note that

For that spherical triangle, 
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Note that for both u+ and u- there are a pair of solutions that are symmetric around B.  Note also
that u+ corresponds to the larger of the two options for RT, which puts T on the lower side of the
band.  It is convenient to define

Then, to a useful approximation, we may write

The size of the range of v for which the star will be seen in every rotation is D = |)u|.   Finally,
for small h we find

which has been known for a long time by members of the FAME project.
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CASE II, |h| > |> - w|.  We address this problem by finding the values of u for which T is
at the upper bound of the observing band (i.e., furthest from the reference plane.)  By setting the
right hand expression of Eq. 3 equal to ±1, we can easily show that |h| # > + w for a star that can
be observed, which is also easily seen from the geometry in Fig. 1.  The general solution for u
follows directly from Eq. 3.

Again, there is a pair of solutions for u and they are symmetric about B; D is the absolute
difference between these values.  The largest range of v for which a target is in the observing
band, Dmax, is at h = > - w.  For small w, it can be shown that

For the present nominal design, > = 45 deg and w = 1.1 deg, the above expression yields Dmax .
44.91 deg. (The exact calculation yields 44.77 deg.)  For the nominal precession period of ten
days and rotation period of 20 minutes, this corresponds to 1.25 days or 90 spacecraft rotations.

III.  Discussion

Figure 2 shows , the size of the range of precession angle (v, in degrees) over which a
star is observed in successive spacecraft rotations.  To convert to time in hours, multiply by 2/3
(based on the mission nominal rate of precession -- one per ten days).  The discontinuity in the
plot corresponds to the transition between the two cases. The size of the precession range varies
slowly for small h, doubling between h = 0 (where it is 3.11 deg) and h = 38 deg., but then
increasing seven fold (to 22.4 deg from the value at h = 0) by the transition angle of 43.9 deg. 
For CASE I, there are two sets of contiguous rotations for observing the target star during a
single cycle of precession.  The gap between these sets is also shown in Fig. 2, and can be seen to
go to zero at the transition between cases.

The analysis has been performed neglecting the Sun’s motion of .1 deg per day.  From a
casual inspection of the full problem, I conclude that for present purposes, the corrections are not
important.  They will, of course, be essential for the analysis of real data.
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Figure 2.  Observation range, D (solid line, scale
on left in deg), and gap between observation
ranges (dashed line, scale on right in deg) as a
function of h, the distance of the star from the
reference plane.  The left-hand and right-hand
portions of the observation span curve
correspond to Case I and Case II, respectively.

I have examined curves like those in
Fig 2, but with w increased to 1.5 deg.  The
change is as expected.  The observation span
increases in proportion to w at h = 0, and in
proportion to  w1/2 at the transition angle,
which is decreased by the increase of w.  The
anticipated small changes (about two degrees
over the precession cycle -- Tech Memo in
preparation by Reasenberg) in the Sun-spin
angle, , will do little to change the curves. 
The most dramatic effect is to shift the
transition angle, but this should not materially
affect the rigidity of the spiral solution.

IV.  Comparison of the coordinate system
used with that of Hipparcos.

The coordinate systems used in the
present analysis (Fig. 1) are similar to those
defined in the Hipparcos project.  (For
Hipparcos coordinates, see: ESA SP-1111,
Vol 3, Fig. 1.10 on page 14; or ESA SP-1200,
Vol 2, Fig. 8.1 on page 144.)  The above analysis started as a quick calculation (using Hipparcos-
like geometry and nomenclature), and grew into the present Tech Memo.  Only after the fact did I
consider the connections given here.  The present work starts from a reference plane
perpendicular to the Sun direction (and thus perpendicular to the ecliptic) and uses Eulerian
rotations to get to the spacecraft frame.  The Hipparcos analysis starts with an ecliptic frame, and
defines the spacecraft spin vector by a pair of (azimuth-zenith) angles; the rotation phase, within
the precessing frame, is with respect to the plane containing the Sun direction (and the spin
vector of the precessing frame.)  A translation between the systems is given in the table on the
next page.  The geometry of Fig. 1 was chosen to simplify the present problem.  It is not
necessarily (in fact, unlikely) the geometry to use for the analysis of the FAME data.
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Connection between notation used for the coordinate system of Fig. 1 and the coordinate
system used in the analysis of the Hipparcos data.

This work Hipparcos (See either of the above references.)
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Eulerian angle  n  = n + 3 /2

Eulerian angle  v  = v + 3 /2
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