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1 Introduction

This note provides formulas for two topics not covered in [1], the primary purpose of which was to

describe a method for eÆciently computing the observing sequence by FAME's on-board computer

system. Since the formulas given in that technical note have also been used for the prototype data

analysis pipeline, it seems appropriate to add two topics not originally covered. These two topics,

on computing the partials for astrometric parameters and on converting to ecliptic coordinates,

would only be applicable to the ground-based data analysis, not the on-board system.

2 Partial Derivatives for Astrometric Parameters

2.1 Overview of Parameter Estimation

The ultimate goal of the FAME astrometric data analysis pipeline is the formation of a least-

squares solution which yields, for each star, the values of �ve astrometric quantities: position

o�set in RA and Dec, proper motion in RA and Dec, and parallax. Actually, for many stars,

proper motion may be generalized to a time series to account for binary orbital motion. These

parameters must be determined along with a large number of other parameters that describe the

spacecraft's instrument and attitude history. The formation of the least squares solution is based

on the computation, for each observation, of partial derivatives of the observed quantities with

respect to all these parameters. In its most general form, the conditional equation for a single
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FAME observable for a single observation is thus
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where u is an observable quantity (e.g., the star image transit time across a CCD row), (O � C)u
is the di�erence between the observed and computed values for u, and �pi, �qi, and �ri are

corrections to the astrometric, attitude, and instrument parameters, respectively. The partial

derivatives for a given observation become elements in a row of the solution design matrix. In

practice, separate solutions may be used for the three classes of parameters. See [2] for a more

complete description of the solution strategy.

In this note we are interested in only the partial derivatives for the astrometric parameters.

Makarov [3] has already developed formulas for the astrometric partials based on a rotation matrix

development. The following development is based on the vector development given in [1] and may

be conceptually and computationally simpler if one already has implemented the algorithms in that

note and the vectors referred to below are therefore immediately available. The two approaches

seem to be equivalent.

2.2 Partials for Position and Proper Motion

In Section 2.3 of [1], a coordinate system was established on the instrument focal plane with basis

vectors u and v and origin at the point where the optical axis intersects the focal plane. We can

imagine this coordinate system projected onto the sky at the point where the extension of the

optical axis (the aperture boresight) meets the celestial sphere. The u vector then points nearly

opposite the instantaneous direction of FAME's scanning motion. Therefore, the [u,v] system

takes on a completely arbitrary and changing direction with respect to the ICRS axes. However,

the FAME observables are most simply represented in this system since the CCDs are (nominally)

aligned to the [u,v] axes. In fact, we can represent the FAME in-scan and cross-scan observables

as �u and �v values, where �u is the O{C value in the in-scan direction and �v is the O{C value

in the cross-scan direction.

For the computation of the astrometric partials, we establish a local coordinate system on the

sky, [r,d], at the position p of the star being observed. The basis vectors r and d are in the

plane of the sky and point in the directions of increasing right ascension and increasing declination,

respectively. The [r,d] system can be established in a manner completely analogous to that used

for the [u,v] system:

r =
n� p

jn� pj

d = �r� p (2)
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Here, n is the unit vector toward the ICRS north celestial pole. This equation is the analog to

eqn. (11) in [1]. These vectors are trivial to compute:

n =

0
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0
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B@ cos Æ cos�
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where � and Æ are the RA and Dec of the star. Whether we should use the apparent position of

the star (denoted p
0 in [1]) or the catalog position of the star (p0) is discussed below. There are,

of course, as many [r,d] systems as there are stars in the �eld; properly, we should write [r,d]ij to

denote the coordinate system for star ij (following the notation of [1]), but for the sake of simplicity

of notation we will omit the subscript.

For each star ij we now have two 2D coordinate systems, [u,v] and [r,d], for the local patch of

sky. The transformation between these two systems is just 
u

v

!
=

 
u � r u � d

v � r v � d

!  
r

d

!
+

 
uij
vij

!
(4)

where (uij ; vij) are the coordinates of star ij in the [u,v] system. The di�erence in the two systems'

origins is unimportant for present purposes, as the partial derivatives relating variations in one set

of coordinates with those in the other set must be simply:

@u

@r
= u � r

@u

@d
= u � d

@v

@r
= v � r

@v

@d
= v � d (5)

Hence the partial derivatives of the O{C's in u and v with respect to a position o�set of the star

in RA and Dec are

@u

@(�� cos Æ)
= u � r

@u

@(�Æ)
= u � d

@v

@(�� cos Æ)
= v � r

@v

@(�Æ)
= v � d (6)

The two cordinate systems are each orthonormal, but they are of opposite handedness if we consider

their two z axes to point in the same direction. We therefore have u � r = �v � d and u � d = v � r.

Also (u � r)2 + (v � r)2 = (u � d)2 + (v � d)2 = 1.

To form the partials for proper motion, the above expressions are multiplied by t � t0, the

di�erence between the time of observation and the selected reference epoch. Partials for higher-

order terms in the star's motion are formed by multiplying the above expressions by (t� t0)
n.
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If we use the apparent position of the star, p0, to form r and d in eqn. (2), the [r,d] system

will change orientation with respect to the ICRS as the star moves due to aberration and proper

motion. For the vast majority of stars this e�ect is quite small, but near the celestial pole it blows

up. In the extreme case, for a star close enough to the pole that the pole is within its aberrational

ellipse, the [r,d] system would rotate through 360Æ over the course of a year! Somewhat farther

from the pole there will still be troublesome annual oscillations of the [r,d] orientation. Needless to

say, when combining observations from di�erent epochs this situation is unacceptable. Therefore it

seems that we should use the catalog position of the star, p0, in forming the [r,d] system. (Again,

the point of origin of the system is irrelevant; only the orientation matters.) As the data analysis

progresses and the catalog is improved, this system will evolve very slightly for each star. However,

the [r,d] system would remain �xed for each star until a catalog update, and that is, I believe, what

we want for the data analysis.

There is a slight swindle in the above: the [u,v] and [r,d] systems are not exactly coplanar,

since the direction of the aperture boresight and direction of the star are not parallel. For stars

near the edge of a degree-wide �eld this may a�ect the partials at the 4 � 10�5 level, acceptable

for O{C's of �0.1 arcsec. The O{C's will get smaller as the catalog improves.

2.3 Partials for Parallax

The development of the parallax partial is similar to that for position and proper motion. We take

FAME's position vector with respect to the solar system barycenter, F, and project it onto the sky

at the star's position p0.1 Both p0 and F are in the ICRS; p0 is a unit vector and F is expressed in

AU. The projection of F onto the plane of the sky is

f = F� (F � p
0)p0 (7)

The position of FAME with respect to the solar system barycenter shifts the apparent position

of the star in the direction �f . The star's parallax in arcsec, x, is just the scaling factor for �f .

The partial derivatives of the O{C's in u and v with respect to x must therefore simply be the

direction cosines of �f with respect to the u and v axes:

@u

@x
= �f � u

@v

@x
= �f � v (8)

Here again, there is a small error due to the fact that f is not exactly in the [u,v] plane.

1I believe that this version of p0 should include proper motion and parallax to the extent known, but not aberration

or light bending. The di�erence in the �nal partial can amount to �10�4 and may not be critical, but the point

needs further thought.
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3 Ecliptic Coordinates

Since FAME's scanning strategy involves a spin axis that precesses along a circle centered on

the Sun, the ecliptic coordinate system could be considered the \natural" system for FAME data

analysis. We expect that the errors and covariances for the astrometric parameters that will come

out of the solution will make the most sense, in the aggregate, when expressed in the ecliptic system.

Because FAME's spin axis never comes close to the ecliptic pole, some degeneracies in rotational

transformations are also avoided when using ecliptic coordinates.

The true ecliptic, de�ned by the plane of the instantaneous position and velocity vectors of

the Earth, undergoes small-scale oscillations due to lunar and planetary perturbations. For some

purposes it is convenient to de�ne a \mean ecliptic" with the short-term periodic motions �ltered

out; it is basically a long-term average of the true ecliptic's motion. In these days of numerically

integrated planetary motions, the distinction between \short term" and \long term" motions can

be problematic. In any event, the orientation of the ecliptic is currently changing at a secular rate

of about 0.5 arcsec/year with respect to an inertial system.

Given that very slow rate of change, it would be inadvisable to attempt to use any kind of

moving ecliptic for FAME data analysis. We do not need the complications of dealing with a

coordinate system that is itself rotating. What we can do is use the �xed ecliptic of J2000.0 (or

the �xed ecliptic of an epoch in the middle of the observations) as an adequate approximation to

the moving ecliptic.

For an arbitrary vector V expressed in the ICRS, its ecliptic equivalent is given by a rotation

about the x-axis:

Vecliptic =

0
B@ 1 0 0

0 cos � sin �

0 � sin � cos �

1
CA VICRS (9)

where � is the obliquity of the ecliptic in the ICRS. The current best estimate for the value of the

mean obliquity at J2000.0 is � = 23Æ 260 21:405900 as given in [4]. The location of the north ecliptic

pole in the ICRS is then at RA = 18h, Dec = 90Æ{�, with unit vector

ne =

0
B@ 0

� sin �

cos �

1
CA

The angular coordinates in the ecliptic system are designated ecliptic longitude, �, and ecliptic

latitude, �, and are measured in the same sense as RA and Dec. As noted above, the two systems

share the x-axis so the zero point of the azimuthal coordinate is the equinox for both. The location

of the north celestial pole in the ecliptic system is at � = 90Æ, � = 90Æ{�.
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Changing to an ecliptic system for the pipeline calculations is quite simple. There are two

options.

Option A If we want to put only the astrometric parameters (and their errors and covariances)

in the ecliptic system, then all we have to do is substitute ne for n in eqn. (2). (The explicit

representation of the vectors in eqn. (3) cannot be used for this case, however.) We will call the

resulting system [re,de], where re points in the direction of increasing ecliptic longitude and de

points in the direction of increasing ecliptic latitude. It should be noted that for this case the

subscript-e vectors relate to the ecliptic system but are themselves expressed in ICRS coordinates.

In the ecliptic system, the star position o�sets (and proper motion) are then expressed in terms of

�� cos � and ��, so eqn. (6) becomes

@u

@(�� cos �)
= u � re

@u

@(��)
= u � de

@v

@(�� cos �)
= v � re

@v

@(��)
= v � de (10)

Equations (7) and (8) for parallax are untouched.

Option B If we want to shift the entire set of pipeline calculations, including those for space-

craft attitude, to the ecliptic system, a little more work | but not much more | is required. The

input star catalog and the apparent place calculations can remain in the ICRS, as can the input �le

of attitude quaternions. We simply have to put the following vectors through the rotation given in

eqn. (9):

p0 unit vector toward catalog position of star (transform after apparent

place is computed)

p
0 unit vector toward apparent place of star

F position vector of FAME wrt solar system barycenter, returned by

apparent place calculation

x,y,z instantaneous directions of FAME's spacecraft-�xed axes

! instantaneous FAME rotation axis

All other vectors and scalars are derived from these. We can use eqns. (2) and (3) as is, with

the understanding that � and � have e�ectively replaced � and Æ. We do not use ne, because

n = (0; 0; 1) will point to the ecliptic pole. If we call the resulting system [re,de] (for consistency

with Option A), then the partials of the astrometric parameters are given by eqn. (10). Equations

(7) and (8) for parallax remain valid.

Note that if the ecliptic transformations are included in the pipeline (either option), we can

easily revert to the ICRS simply by setting the obliquity � to zero. That is, the obliquity value can

act as a \switch" to select either ICRS or ecliptic calculations.
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One other piece of un�nished business remains. Since the FAME star catalog will remain stored

in ICRS coordinates, we need to be able to transform corrections to the astrometric parameters,

expressed in the ecliptic system, back to the ICRS. This transformation would need to be done

either to update the catalog or, during debugging, to check whether the pipeline had recovered

deliberately introduced catalog errors. This can be treated as a transformation of di�erential

quantities, local to the small area of sky around each star, from the ecliptic-based [re,de] system

to the ICRS-based [r,d] system:

 
�� cos Æ

�Æ

!
=

 
r � re r � de

d � re d � de

!  
�� cos �

��

!
(11)

which obviously requires that all four vectors, r, d, re, and de, be computed, even though only one

pair is used for the main part of the calculations. For Option B we can obtain r and d if we set

n =

0
B@ 0

sin �

cos �

1
CA

then use eqn. (2). Here, n is the direction of the north celestial pole in the ecliptic system.
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